
COUNTING POINTS ON THE FRICKE-MACBEATH CURVE

OVER FINITE FIELDS

JAAP TOP AND CARLO VERSCHOOR

Abstract. The Fricke-Macbeath curve is a smooth projective algebraic curve
of genus 7 with automorphism group PSL2(F8). We recall two models of it

(introduced, respectively, by Maxim Hendriks and by Bradley Brock) defined

over Q, and we establish an explicit isomorphism defined over Q(
√
−7) between

these models. Moreover, we decompose upto isogeny over Q the jacobian of

one of these models. As a consequence we obtain a simple formula for the

number of points over Fq on (the reduction of) this model, in terms of the
elliptic curve with equation y2 = x3 + x2 − 114x − 127. Moreover, twists by

elements of PSL2(F8) of the curve over finite fields are described. The curve

leads to a number of new records as maintained on manypoints.org of curves
of genus 7 with many rational points over finite fields.

1. Introduction

It is well-known that an algebraic curve of genus g > 1 over C has at most
84(g − 1) automorphisms. A curve attaining this bound is called a Hurwitz curve.
The corresponding Riemann surface can in this case be described as Γ H in which
Γ is a normal subgroup of finite index in the triangle group G2,3,7, acting in the
classical way on the complex upper half plane H. See, e.g., §3.19 of Shimura’s paper
[Sh67] and §5.3 of the exposition by Elkies [El98] for details The plane curve with
equation x3y+ y3z+ z3z = 0, named after Felix Klein who studied it in 1879 in his
paper [K79], is the unique example up to isomorphisms for genus g = 3. The next
example occurs for g = 7 and was introduced as a Riemann surface by Robert Fricke
in 1899 [F99]. Explicit equations realizing Fricke’s example as an algebraic curve,
were presented in 1965 by A.M. Macbeath [M65], see also W.L. Edge’s paper [Ed67]
which appeared two years later. Again, upto isomorphisms over C there is a unique
curve of genus 7 admitting 504 automorphisms; here and elsewhere it is called
the Fricke-Macbeath curve. Whereas Edge derives the equations first presented by
Macbeath by starting from the property that they need to define a curve in P6

having a given subgroup of order 504 in PGL7(C) as automorphism group, there is
an alternative, very natural way to find the curve, as is explained in a letter dated
24-vii-1990 of J-P. Serre to S.S. Abhyankar [Se90]. Namely, Serre observes that
G = PSL2(F8) is a transitive subgroup of the alternating group A9 (which in fact
follows from the action of G on the 9 points in P1(F8)). The stabilizer S ⊂ G of
any of these 9 points then makes X → X/G the normal closure of X/S → X/G,
where we denote the desired curve as X. Both X/S and X/G are rational curves,
and the ramification of the resulting degree 9 map P1 → P1 is known and occurs
only over three points. This information suffices to determine the degree 9 map
explicitly, and hence to find the curve X.

The equations described by Macbeath (and explained in detail by Edge) define
a curve M ⊂ P6, given (with ζ7 a primitive 7th root of unity) by the ideal with
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generators

M :
x20 + x21 + x22 + x23 + x24 + x25 + x26,
x20 + ζ7x

2
1 + ζ27x

2
2 + ζ37x

2
3 + ζ47x

2
4 + ζ57x

2
5 + ζ67x

2
6,

x20 + ζ67x
2
1 + ζ57x

2
2 + ζ47x

2
3 + ζ37x

2
4 + ζ27x

2
5 + ζ7x

2
6,(

ζ57 − ζ27
)
x1x4 +

(
ζ67 − ζ7

)
x3x5 +

(
−ζ47 + ζ37

)
x0x6,(

−ζ47 + ζ37
)
x0x1 +

(
ζ57 − ζ27

)
x2x5 +

(
ζ67 − ζ7

)
x4x6,(

−ζ47 + ζ37
)
x1x2 +

(
ζ67 − ζ7

)
x0x5 +

(
ζ57 − ζ27

)
x3x6,(

−ζ47 + ζ37
)
x2x3 +

(
ζ57 − ζ27

)
x0x4 +

(
ζ67 − ζ7

)
x1x6,(

ζ67 − ζ7
)
x0x2 +

(
−ζ47 + ζ37

)
x3x4 +

(
ζ57 − ζ27

)
x1x5,(

ζ67 − ζ7
)
x1x3 +

(
−ζ47 + ζ37

)
x4x5 +

(
ζ57 − ζ27

)
x2x6,(

ζ57 − ζ27
)
x0x3 +

(
ζ67 − ζ7

)
x2x4 +

(
−ζ47 + ζ37

)
x5x6.

A consequence of a very general criterion of Girondo, Torres-Teigell, and Wolfart
[GTW14] is that it is possible to define the Fricke-Macbeath curve as an algebraic
curve over Q. As part of his PhD research, Maxim Hendriks in Eindhoven did
exactly this. He presented in his thesis [He13, p. 192–194] a curve H ⊂ P6 given as
an intersection of 10 quadrics. Generators of the ideal defining H are

H :
−x1x2 + x1x0 + x2x6 + x3x4 − x3x5 − x3x0 − x4x6 − x5x6,
x1x3 + x1x6 − x22 + 2x2x5 + x2x0 − x23 + x4x5 − x4x0 − x25,
x21 − x1x3 + x22 − x2x4 − x2x5 − x2x0 − x23 + x3x6 + 2x5x0 − x20,
x1x4 − 2x1x5 + 2x1x0 − x2x6 − x3x4 − x3x5 + x5x6 + x6x0,
x21 − 2x1x3 − x22 − x2x4 − x2x5 + 2x2x0 + x23 + x3x6 + x4x5 + x25 − x5x0 − x26,
x1x2 − x1x5 − 2x1x0 + 2x2x3 − x3x0 − x5x6 + 2x6x0,
−2x1x2 − x1x4 − x1x5 + 2x1x0 + 2x2x3 − 2x3x0 + 2x5x6 − x6x0,
2x21 + x1x3 − x1x6 + 3x2x0 + x4x5 − x4x0 − x25 + x26 − x20,
2x21 − x1x3 + x1x6 + x22 + x2x0 + x23 − 2x3x6 + x4x5 − x4x0 + x25 − 2x5x0 + x26 + x20,
x21 + x1x3 − x1x6 + 2x2x5 − 3x2x0 + 2x3x6 + x24 + x4x5 − x4x0 + x26 + 3x20.

Moreover Hendriks presents an explicit isomorphism between M and H (see also
Theorem 1 below).

In §2.3 of a recent paper by Rubén Hidalgo [Hi15], another model over Q of the
Fricke-Macbeath curve is mentioned. It is attributed to Bradley Brock, and given
by the affine equation in two variables

1 + 7xy + 21x2y2 + 35x3y3 + 28x4y4 + 2x7 + 2y7 = 0.

One readily calculates that this curve in A2 has as singularities 14 nodes, and its
closure in P2 has no singular points at infinity. So indeed the equation defines a
curve of genus 7. Using a basis of the regular 1-forms on the normalization, one
obtains an embedding of the curve in P6. The resulting curve B ⊂ P6 can be given
as follows (here and in other calculations Magma [BCP97] was used).

B :
x0x2 + 12x23 − x4x6,
−x21 + x0x3 − 2x5x6,
x0x4 + 16x3x5 + 8x26,
−x1x3 + x0x5 + 1

2x2x6,
−x2x3 + 2x25 + x0x6,
x1x2 + 12x3x5 + 4x26,
−2x2x3 + x1x4 − 8x25,
−x23 + x1x5 + 1

4x4x6,
− 1

2x3x4 −
1
2x2x5 + x1x6,

x22 + 2x4x5 + 8x3x6.
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2. Results

First, we present explicit isomorphisms between the curves M,H, and B.

Theorem 1 (Hendriks, [He13]). With notations as in the previous section and
α := ζ7 + ζ−17 , an isomorphism M → H is given by m 7→ Am, with 7A =

0 0 α2 − α− 2 −α2 − α− 1 0 2α2 − 1 0
α2 − 2α 0 0 0 3α+ 1 0 −α2 − 2α+ 1

0 0 −α2 − α− 1 −2α2 + 1 0 α2 − α− 2 0
0 7α 0 0 0 0 0

−α2 − 2α+ 1 0 0 0 −α2 + 2α 0 −3α− 1
0 0 −3α− 1 −α2 + 2α 0 α2 + 2α− 1 0

−3α− 1 0 0 0 α2 + 2α− 1 0 α2 − 2α


.

Theorem 2. With notations as in the previous section, an isomorphism B → H
is given by b 7→ A′b, with

A′ =
1

2



2 −8 4 −24 1 24 0
2
√
−7 −4

√
−7 −2

√
−7 0 −

√
−7 0 −8

√
−7

6 4 −2 −16 3 16 0
2
√
−7 −4

√
−7 −2

√
−7 −8

√
−7 −

√
−7 −8

√
−7 16

√
−7

0 −4
√
−7 −2

√
−7 −8

√
−7 0 −8

√
−7 −8

√
−7

−2 8 −4 −32 −1 32 0
2
√
−7 0 0 −8

√
−7 −

√
−7 −8

√
−7 −8

√
−7


.

Note that Theorems 1 and 2 imply that the three curves M,H, and B are
isomorphic over Q(ζ7). Although both H and B are defined over Q, they are not
isomorphic over Q. This follows, e.g., from the fact that both have good reduction
modulo 3, and #H(F3) = 3 6= 5 = #B(F3).

From now on we focus on the model H presented by Hendriks. Our aim is to
describe the jacobian Jac(H) up to isogenies defined over Q, in terms of jacobians
of certain quotients of H. To this end, let X ⊂ P2 be the plane quartic of genus 3
defined by

X : 5x4 + 12x3y + 6x2y2 − 4xy3 + 4y4 − 28x3z + 16x2yz − 24xy2z+
16y3z + 24x2z2 − 10y2z2 − 12xz3 + 8yz3 + 3z4.

Furthermore let E be the elliptic curve with equation

y2 = x3 + x2 − 114x− 127.

The curve X defines the quotient of H by the involution Diag(−1, 1,−1, 1, 1,−1, 1).
It is the image of H under (x0 : x1 : x2 : x3 : x4 : x5 : x6) 7→ (x0 : x2 : x5). The
elliptic curve E is obtained as a quotient of H by a group of order 7. Such a quotient
was also described by Klaus Wohlfahrt in the corrigendum to his paper [Wo86]. His
elliptic curve is in fact the quadratic twist by

√
−7 of E. The reader may verify that

a very simple way to find the same elliptic curve as Wohlfahrt did, is by starting
from the affine plane model of the Fricke-Macbeath curve given by Brock. Taking
the quotient by (x, y) 7→ (ζ7x, ζ

−1
7 y) yields Wohlfahrt’s elliptic curve.

Theorem 3. Jac(H) is isogenous over Q to Jac(X)× Jac(X)× E.

The next goal will be to analyse Jac(X). It turns out that Aut(X) contains a
group Z/2Z×Z/2Z, with involutions defined over Q(α). Moreover, these involutions
are permuted by Gal(Q(α)/Q). Let σ be a generator of this (cyclic) Galois group
of order 3. The quotient of X by one of the involutions turns out to be a genus one
curve C over Q(α), with jacobian E′ isogenous, again over Q(α), to E. The action of
σ yields the jacobians of the three quotients of X by the involutions. The restriction
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of scalars ResQ(α)/Q(E′), which is over Q(α) isomorphic to E′ × σ(E′)× σ2(E′), is
the abelian threefold over Q we look for.

Theorem 4. Jac(X) is over Q isogenous to ResQ(α)/Q(E′), and the elliptic curves
E and E′ are isogenous over Q(α).

A straightforward consequence of Theorem 4 is a formula for #X(Fq), for q = pn

and p a prime 6= 2, 7:

Corollary 5. The curve X has good reduction modulo every prime number p 6= 2, 7.
If q = pn is a positive power of such a prime p, then

#X(Fq) =

{
q + 1 if q 6≡ ±1 mod 7;
3#E(Fq)− 2q − 2 if q ≡ ±1 mod 7.

Combining Theorem 3 and Corollary 5 leads to the main result of this paper:

Theorem 6. The curve H has good reduction modulo every prime number p 6= 2, 7.
If q = pn is a positive power of such a prime p, then

#H(Fq) =

{
#E(Fq) if q 6≡ ±1 mod 7;
7#E(Fq)− 6q − 6 if q ≡ ±1 mod 7.

The results described above are proven in the next section. In Section 4 we apply
Theorem 6 to some particular prime powers q, resulting in various new records in
the tables [GHLR09] maintained on manypoints.org of curves with many points
over finite fields. In the same section we describe twists of H/Fq and we show
examples where these lead to new records as well.

Most results of this paper were obtained during the master’s project of the second
author [V15], supervised by the first author.

3. Proofs

The statements in Theorem 1 and in Theorem 2 can be easily verified, so we omit
this here. Instead, some comments are presented explaining how the isomorphisms
were found. By construction, the curves M,H, and B are canonically embedded
curves in P6. Hence an isomorphism between two of these curves is necessarily
given by an element of PGL7(Q). Conjugation by this element then yields an
isomorphism from the automorphism group of one curve to that of the other. By
first determining such a conjugation, i.e., an A ∈ PGL7(Q) satisfying Aα1 = α2A
with α1 running over the generators of some subgroup of the automorphisms of one
curve, and the α2 analogous generators of an isomorphic subgroup coming from the
other curve, the isomorphisms were determined.

To make this explicit, consider the generators T,W of Aut(M) ⊂ PGL7(Q),
defined as

T =



−1 0 0 1 1 −1 0
0 0 −1 −1 1 0 −1
0 1 −1 1 0 1 0
−1 −1 −1 0 −1 0 0
−1 1 0 −1 0 0 1

1 0 −1 0 0 −1 1
0 1 0 0 −1 −1 −1


, W =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0


.

Then T 3 = W 7 = (TW )2 = id. Corresponding generators R,S of Aut(H) satisfying
R3 = S7 = (SR)2 = id one finds in the thesis of Hendriks [He13]. With α = ζ7+ζ−17
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as before, they are R :=
2α2 + 3α− 7 3α2 + 4α + 1 4α2 + 2α− 6 −α2 + α + 2 −4α2 − 3α + 1 −7α2 − 5α + 10 3α2 − 3α− 6

4α2 + 8α− 4 4α2 + α− 11 −9α2 − 3α + 14 2α2 + α− 3 −5α2 − 5α + 2 −2α2 − α + 3 α2 + 6α + 5

2α2 + 4α− 2 6α2 + 3α− 9 α2 + α− 6 −2α2 − α + 3 −α2 + 3α− 2 −2α2 − 7α + 1 −α2 − 4α + 5

14α2 + 7α− 21 7α + 7 −7α2 + 7α + 14 0 7α2 − 7 0 −7α2 − 7α + 14

6α2 + 9α− 7 5α2 − α− 4 −11α2 − 7α + 16 −α2 − 2α + 1 −3α2 − 4α− 1 α2 + 2α− 1 5α− 3

6α2 − 10 3α2 − 5 4α2 + 8α− 4 −α2 − 3 −4α2 + 2 −3α2 − 4α− 1 3α2 − 5

4α2 + 11α− 3 5α2 − 13 −8α2 − 4α + 12 −α2 + α + 2 −6α2 − 5α + 13 α2 − α− 2 −α2 + 3α− 2


and S :=

−α2 + 4 −α− 5 2α2 + 2α− 5 0 −α + 2 −2α2 − α + 3 −α + 2

3α + 1 −α2 − 2α + 1 −2α2 − 3α α− 2 −3α2 − α + 7 α2 + α + 1 3α2 + 3α− 4

2α + 3 α2 − 4 2α2 + α− 3 0 α2 + 3 −α2 − 2α + 1 α2 − 4

−7α2 + 14 0 −7α 0 0 −7 0

−α2 + 2α −3α− 1 −2α2 − α + 3 α2 − 4 −α2 + α + 2 −α + 2 2α2 + 3α

2α2 + 3α 5α2 + 2α− 10 −α2 + α + 2 0 −2α2 − 5α + 4 −α2 − α− 1 −2α2 + 2α + 4

α2 + 2α− 1 α2 − 2α −3α2 − 3α + 4 −α2 − α− 1 −3α2 + 5 −α2 + 4 2α2 + α− 3

 .

Solving for the matrix A in the linear equations RA = AT, SA = AW then results
in the desired isomorphism.

In the case of the curves B and H, the only obvious automorphisms of B form
a dihedral group of order 14. On the plane model, this group is generated by
(x, y) 7→ (y, x) and (x, y) 7→ (ζ7x, ζ

−1
7 y). On B this yields the matrices

D := Diag(ζ57 , ζ
3
7 , ζ

4
7 , ζ7, ζ

2
7 , ζ

6
7 , 1)

and

F :=



0 0 0 0 −2 0 0
0 0 2 0 0 0 0
0 1

2 0 0 0 0 0
0 0 0 0 0 1 0
− 1

2 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1


.

A corresponding dihedral group in Aut(H) is the one with generators

τ := (S−1RS−1)2RS = Diag(−1, 1,−1, 1, 1,−1, 1)

and L := (S−2R)2S−1, given by 14L :=
−4α2 − α + 4 3α2 − 12 4α2 + 2α− 6 −α2 + α + 2 5α + 4 α2 + 5α −5α2 − 3α + 12

−2α2 − 6α + 6 −3α− 1 7α2 + 7α− 7 −α− 5 −7α2 − 3α + 13 −2α2 + α− 1 7α2 + 4α− 8

2α2 + 4α− 2 −2α2 − 5α− 3 5α2 − α− 11 −2α2 − α + 3 3α2 + 3α + 3 −4α2 + α + 7 −5α2 + 6

−7α −7α− 7 7α2 + 7α− 7 7 −7α2 + 7 −7 7α2 + 7α− 14

−7α −3α2 − 7α + 5 α2 + 3α− 3 −α2 − 3 −3α2 + 5 3α2 + 2α− 9 4α2 + 7α− 2

4α2 + 8α− 4 5α2 − 4α− 12 −4α2 − 2α + 6 −α2 + 4 −6α2 − 2α + 14 −α2 + 2α −α2 + 6α + 6

2α2 − α− 6 3α2 − 4α− 4 6α2 + 4α− 4 α2 + α− 6 −4α2 + 3α + 10 −α2 − 3α− 4 3α2 + 3α− 4

 .

Solving the system τA′ = A′F , LA′ = A′D for the matrix A′ yields the map
given in Theorem 2.

We will now prove Theorem 3. Denote π : (x0 : . . . : x6) 7→ (x0 : x2 : x5),
with π(H) = X. Let ω1, ω2, ω3 be a basis for the space of regular differentials
H0(X,Ω1). A calculation shows that π∗ω1, π

∗ω2, π
∗ω3, τ

∗π∗ω1, τ
∗π∗ω2, τ

∗π∗ω3 are
linearly independent in H0(H,Ω1). Hence

(π, πτ) : H → X ×X
induces a homomorphism Jac(X)× Jac(X)→ Jac(H) with finite kernel. Then the
cokernel is an abelian variety of dimension 1 defined over Q, i.e., it is an elliptic
curve over Q. We briefly sketch two methods to find an equation for this elliptic
curve (in the first case, up to isogeny over Q).

For the first method, observe that the curve B (and hence also H) has good
reduction except at the primes 2 and 7. A convenient way to verify this, is by using
the plane model of B. A consequence of this is, that the desired elliptic curve has
good reduction away from 2 and 7. So its conductor divides 28 · 72. Moreover, by
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construction the number of rational points on this elliptic curve over Fp for a prime
p 6= 2, 7 equals

#H(Fp)− 2#X(Fp) + 2p+ 2.

This information suffices to determine the correct isogeny class among the finitely
many possible ones.

Alternatively, and more geometrically, take ρ := (SR−1S)3 which is an automor-
phism defined over the ground field, of order 3. A calculation (compare [V15, p. 13-
15]) reveals that H/〈ρ〉 is a curve of genus 1, given by y2 = −7t4−28t3−56t2−28.
The jacobian of this curve is our curve E. Since ρ∗ fixes no differentials in the sub-
space of H0(X,Ω1) spanned by π∗ω1, π

∗ω2, π
∗ω3, τ

∗π∗ω1, τ
∗π∗ω2, τ

∗π∗ω3, it follows
that Jac(H) ∼ Jac(X)× Jac(X)× E.

Next we prove Theorem 4. For this, one observes that X admits over Q(α) the
involution given by

A :=
1

7

 −4α2 − 4α+ 3 −2α2 + 2α+ 4 4α2 + 2α− 6
−4α2 − 2α+ 6 2α2 + 2α− 5 2α2 + 4α− 2
2α2 − 2α− 4 6α+ 2 2α2 + 2α− 5

 .

Moreover, A and its conjugates σ(A) and σ2(A) generate a group of automorphisms
of X isomorphic to Z/2Z× Z/2Z. The quotient of X by any nontrivial element of
this group is an elliptic curve over Q(α), and the three elliptic curves obtained in
this way are obviously conjugate. There are no nontrivial regular differentials on
X fixed by all three involutions. This suffices to conclude that Jac(X) is isogenous
over Q to the restriction of scalars of any of the three elliptic curves. The elliptic
curve E has its three points of order 2 defined over Q(α). The 2-isogenies resulting
from this, turn out to have as image curves exactly the three elliptic curves we
found as quotients of X. This proves Theorem 4.

Corollary 5 is an immediate consequence of Theorem 4. The statement con-
cerning good reduction is easily verified. In the case q ≡ ±1 mod 7, all 7-th roots
of unity exist in Fq2 and hence Fq contains the residue class field at the primes
dividing q of Q(α). As a consequence, Jac(X) is isogenous over Fq to E × E × E,
from which the formula for the number of points in this case is immediate. For
q 6≡ ±1 mod 7, the residue class field of Q(α) at primes dividing q is not contained
in Fq but in its cubic extension. Hence the q-th power Frobenius permutes the
reductions of the three curves E′, σ(E′), and σ2(E′). This implies that the trace of
Frobenius on ResQ(α)/Q(E′) is zero, implying the remaining formula.

E′

σ(E′)

σ2(E′)

T`E
′

T`σ(E′)

T`σ
2(E′)

Frobq

Frobq

Frobq

This completes the proof of the results presented in Section 2.
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4. Examples and twists

The website http://manypoints.org/ [GHLR09] lists, for small genera g and
small cardinalities q of a finite field, an upper bound up for the cardinality #C(Fq)
of any smooth, complete and absolutely irreducible curve C of genus g defined over
Fq. In many instances this is the Hasse-Weil-Serre bound q + 1 + gm, in which m
is the largest integer ≤

√
4q. In case a curve reaching this bound is known to exist,

this means the number Nq(g), denoting the maximum over all such cardinalities
#C(Fq) for fixed g, q is determined. If no curve reaching the upper bound is known

then the tables aim to list an example with at least up/
√

2 rational points. We
now list the cases in which the curve H provides such an example. Instances where
an example with at least as many points is known, will be ignored. Somewhat
surprisingly, even with q 6≡ ±1 mod 7, in which case Theorem 6 shows that H has
(only) as many rational points as the elliptic curve E, some new entries were found.

q 33 53 55 115 132 133 134 135

up 95 277 3903 166666 352 2849 30928 379820

dup/
√

2e 68 196 2760 117851 249 2015 21870 268574
#H(Fq) 84 252 3183 161625 324 2688 27540(∗) 362880(∗)

q 173 175 194 195 29 97
up 5892 1436539 135376 2498129 100 231

dup/
√

2e 4167 1015787 95726 1766444 71 164
#H(Fq) 5796 1417575 129675(∗) 2477811 72 168

In a sense the ‘smallest’ example here is #H(F27) = 84. The previous record for
q = 27 and g = 7 was obtained by Sémirat [Sém00] in 2000, who found an example
having 82 rational points. The three marked (∗) entries show examples which we
will improve now, as follows.

A natural attempt to obtain more examples with many points from the curve
H, is to consider twists of it over Fq, i.e., curves over the same field which are
isomorphic to H over some extension field. We refer to [MT] for some general
theory concerning twists. The twists over Fq are in 1− 1 correspondence with the

set H1(Gal(Fq/Fq),Aut(H)), and the latter set allows a natural bijection to the set
of ‘Frobenius conjugacy classes’ in Aut(H).

In our case, we consider H1(Gal(Fq/Fq), G), with G ⊂ PGL7(Fq) the simple
group of order 504 acting as automorphisms on H. These automorphisms are
defined over Fq(ζ+ζ−1) with ζ a primitive 7th root of unity. Hence the Galois action
on G is trivial precisely when q ≡ ±1 mod 7. In this case, Frobenius conjugacy
classes coincide with ordinary conjugacy classes, and there are 9 of these. For
q 6≡ ±1 mod 7 a calculation with Magma shows that there exist only 3 Frobenius
conjugacy classes.

If an automorphism β defines some Frobenius conjugacy class, then the corre-
sponding cocycle class is represented by the cocycle defined by Frobq 7→ β. It
defines a twist Htw, and by construction rational points on this twist correspond
to points P ∈ H(Fq) such that β(Frobq(P )) = P . This allows one to calculate, for
given q and β, the number of rational points #Htw(Fq).

Ignoring the trivial twist which results in the curve H itself, we can improve 3
of the records presented in the earlier table. They are given below.

(1) q = 134 ≡ 1 mod 7. The (cubic) twist corresponding to Frobq 7→ R has
28854 rational points. This exceeds #H(F134) = 27540.

(2) q = 135 ≡ −1 mod 7. The quadratic twist corresponding to the co-
cycle Frobq 7→ τ = (S−1RS−1)2RS has 372496 rational points, while
#H(F135) = 362880.
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(3) (Again) q = 135 ≡ −1 mod 7. The cubic twist corresponding to the cocycle
Frobq 7→ R has 373698 rational points, improving what was found in (2)
above.

(4) q = 194 ≡ 2 mod 7. Here, the quadratic twist corresponding to the co-
cycle Frobq 7→ τ = (S−1RS−1)2RS has 130969 rational points, whereas
#H(F194) = 129675.

Using the Sage code from appendix A.2.3 of [V15] one can calculate explicit models
for the desired twists. As an example, the quadratic twist using the automorphism
(x, y) 7→ (y, x) of the affine curve 1+7xy+21x2y2+35x3y3+28x4y4+2x7+2y7 = 0

the twist over Fq(
√
d)/Fq is given by:

7d4x8 + 2d4x7 − 28d3x6y2 + 35d4x6 + 42d3x5y2 + 42d2x4y4 − 105d3x4y2

+70d2x3y4 − 28dx2y6 + 84d4x4 + 105d2x2y4 + 14dxy6 + 7y8 − 168d3x2y2 − 35dy6

+112d4x2 + 84d2y4 − 112d3y2 + 64d4 = 0.
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