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CERTAIN SEXTICS WITH MANY RATIONAL POINTS
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ABSTRACT. We construct a family of sextics from the Wiman and Edge sextics.
We find a curve over F57 attaining the Serre bound, and update 9 entries of
genus 6 in manYPoints.org by computer search on these sextics.

1. INTRODUCTION

Goppa discovered algebro-geometric codes in 1970s, where we can construct effi-
cient codes from explicit curves with many rational points; see [I0]. For a curve C' of
genus g over a finite field IF,, we have the Hasse-Weil bound #C(F,) < ¢+1+2¢./3.
A curve attaining this bound is said to be maximal. Here p is a prime number and
q is a power of p. By a curve we mean a projective geometrically irreducible non-
singular curve. In 1983, Serre improved this bound as #C(F,) < ¢+ 1+ g|2,/q],
which we call the Serre bound. Here | | means round down.

There are many interesting researches in maximal curves; see [3], [5] and their
references. However there are only a few examples of curves which attain the Serre
bound but are not maximal. In [7], [8], we find such curves from families of Wiman
and Edge sextics. A family of the Wiman sextics W in [I1] is defined by

28 448 11+ a(zty? + 22yt + 2+ 2+ yt + y2) + bay? = O;
the Edge sextics E in [2] is defined by
2y + 14 (@ +y? + 1)@t +yt +1) = 122%° + a(y® - 1)(1 —2?)(a? —y?) = 0.

It is natural to try to generalise these two families of sextics. The purpose of this
paper is to find curves with many rational points among them.

2. (GENERALISING DEFINING EQUATIONS
Define a sextic S with the following equation:
Iﬁ +y6 41 —|—a(:1:4y2 —|—$2 +y4) —|—b(:E2y4 —|—$4 +y2) —|—C:E2y2 —=0.

Immediately we can check that if a = b then S are the Wiman sextics, and if
a=(1-a)/2,b=(14a)/2, c=—6 then S are the Edge sextics.

Afterward we set ¢ = —3(a + b+ 1) in this section. Set Jac(C') be the Jacobian
variety of a curve C', and k be a field of characteristic p > 5.
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Proposition 1. The Jacobian variety of S decomposes over k as
Jac(S) ~ Jac(D) x Jac(D')?,
where D: y* = fop(z) and D': y* = fy.q(z) with
fap(®) = —(2® + bz +ax + 1) ((a+b+2)2* — (a+2b+3)2® + (b+3)x — 1).
The basic idea of the proof is the same as Proposition 10 in [g].

Proof. We have p: (z,y) — (z,—y) and ¢: (z,y) — (—z,y) in the automorphism
group of the sextic S. By Theorem B of [6], the following isogeny relation is satisfied:

Jac(8) x Jac(S/(t, p))* ~ Jac(S/()) x Jac(S/{p)) x Jac(S/(tp)),

where S/(p) is birational equivalent to D, S/(t) and S/(ip) are birational equivalent
to D'. Since ¢ = —3(a + b + 1), the genus of S/(¢,p) is 0, which completes the
proof. O

Corollary 2. #S(F,) = 3#D(F,) —2q — 2.

Proof. Since #D(F,) = #D’'(F,), it follows from the trace of Frobenius action on
a Tate module of Jacobians. O

Note that if a+b+2, —4a®+a?b?+18ab—4b3—27, the resultant of z3+bz?+azx+1
and (a +b+2)2® — (a +2b+ 3)2® + (b+ 3)z — 1 are not 0 then the genus of D is
2. Now we search by the computer algebra package Magma [I] among them. We
find maximal curves D over F,>, which give us maximal sextics S of genus 6 over

2 simultaneously.

Example 3. The sextic S is maximal over F,2 when (p, a,b) is (37,9,13), (43,2, 5),
(53,13,46), (67,27,48), (97,80,86), (113,50,91), (137,60,130), (151,12,149),
(163, 15,155), (173,5, 111), (181,3,49), (197, 68,102), - - -

In Table [ we list prime numbers p < 200. If there is a maximal Wiman or Edge
sextic over F,2 in [§], then we write W or E under p respectively. If there is a
maximal sextic over Fj2 in Example B} we write S under p.

) 711 13 17 19 23 29
W W W W W
31 37 41 43 47 53 59 61
w S W S W S W
67 71 73 79 8 8 97 101
S W W W W S W

103 107 109 113 127 131 137 139
W W E S W W S W
149 151 157 163 167 173 179 181
B S S W S W S
191 193 197 199
W W S W

TABLE 1. Maximal curves over F,> of genus 6

Next, for a,b € F), and ¢ > 3, we can compute the number of rational points of
#D(F,:) from #D(F,) and #D(F,2) by the theory of Zeta function. We list the
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algorithm here, where we set n; = #D(F,i).
Input n1,n9

ar < ny—p-—1
az < (n2 —p?> —1+a?)/2

Wi, - ,wq — roots of x* + a12® + asx® + parx +p?> =0
n; < p+1-— ijl w;’
Output n;

We implement it by Magma, and find a curve attaining the Serre bound.

Example 4. The sextic
H:a® 148 +1+ 22yt +at+42) — a2y =0

of genus 6 over Fy7 attains the Serre bound.

We note the assertion of Lauter from Theorem 1 in [9].
Theorem 5 ([9]). The Serre bound cannot be met when ¢ =57 and g > 7.

We note that the Jacobian of H decomposes over Fsr as Jac(H) ~ E$ x E3,
where Ey: y? =23+ 3z +2 and Ey: y? = 23 + 22 + 2.

3. UPDATING TABLE OF CURVES WITH MANY POINTS

We also find new curves with many rational points of genus 6 by computer search
on S using Magma, which we list in Table 2l Bl For example, S over 53 has 240
rational points when a = 8%, b = 8°% and ¢ = 3® where 3 is a root of u?+3u-+3 =0
in F5s. Here the best known lower bound is 210 and the upper bound is 255 in [4].

F, | (a,b,c) | #S(Fp) | old entry

19 [ (13,6,16) | 56 [50 — 68]
37 |(29,28,14) | 98 [86 — 104]
43| (2,4,2) 104 | [100 — 116

[ |
53| (51,36,1) 132 [120 — 138]
61 | (42,54,17) 140 [134 — 152]
67 | (65,2,45) 152 [140 — 164]
71| (29,65, 70) 156 [150 — 168]
TABLE 2. S with many points over I,

F, (a,b,c) #S(F,) | old entry
55| (8%, 8%, 8%) 240 | [210 — 255]
uw+3u+3=0
(872,89, 8%) 542 | [512 — 564]
uw—u?+4=0
TABLE 3. S with many points over F,
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