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Oğuz Yayla

Institute of Applied Mathematics, Middle East Technical University,

Dumlupınar Bul., No:1, 06800, Ankara, Turkey

e-mail: yayla@metu.edu.tr

Abstract. We make an exhaustive computer search for finding new curves with

many points among fibre products of two Kummer covers over F5 and F7. At the

end of the search, we have 12 records and 6 new entries for the current tables [8]. In

particular, we observe that a fibre product

y3
1 =

5(x + 2)(x + 5)

x
, y3

2 =
3x2(x + 5)

x + 3

over F7 has genus 7 with 36 rational points. As this coincides with the Oesterlé

bound, we conclude that the maximum number N7(7) of F7-rational points among

all curves of genus 7 is 36. Our exhaustive search has been possible because of the

methods given in [5] for determining the number of rational points of such curves.

Using these methods, determining the rational points of such curves has been up to

107 times faster than the generic method of MAGMA.
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1. Introduction

Let Fq be a finite field with q = pn elements, where p is a prime number. If C is

an absolutely irreducible, nonsingular and projective curve defined over Fq, then the

number N of Fq-rational points of C is bounded by the well-known Hasse-Weil bound

N ≤ q + 1 + 2g(C)√q.(1.1)

where g(C) denotes the genus of the curve C. If the bound in (1.1) is attained and

g(C) ≥ 1, then C is called a maximal curve.

Constructing explicit curves with many rational points has always been challenging

as they have many applications in coding theory, cryptography and quasi-random points

[2], [3], [4], [6], [7] etc. Let Nq(g) denote the maximum number of Fq-rational points

among the absolutely irreducible, nonsingular and projective curves of genus g defined

over Fq. For g ≤ 50 and small finite fields of characteristic p = 2 and p = 3, van der

Geer and van der Vlugt collected the results of Nq(g) in “Tables of Curves with Many

Points” [1]. The tables were being updated in the web page of Prof. van der Geer up

to October 7, 2009. Presently, together with their references, known upper and lower

bounds for Nq(g) (where g ≤ 50 and p < 100) are being collected in “manyPoints-Table

of Curves with Many Points” [8].

The theory of algebraic curves is essentially equivalent to the theory of algebraic

function fields and throughout the paper we use the language of function fields [6]. We

call a degree one place of an algebraic function field as a rational place (or rational

point) of the function field. Let n1, n2 ≥ 2 be integers, and h1(x) and h2(x) ∈ Fq(x).

Consider the fibre product

yn1
1 = h1(x),

yn2
2 = h2(x).

(1.2)

Let E be the algebraic function field E = Fq(x, y1, y2) with the system of equations in

(1.2). If the number of rational places of E is more than Nmax,q,g/
√

2, where Nmax,q,g

is the best known upper bound for Nq(g) (Hasse-Weil, Serre, Ihara, Oesterlé etc.)- this

is the case if there is no entry for the lower bound in the tables [8]- then we call it a

new entry. If the number of rational places of E is more than the existing lower bound

in the tables [8], then we call it a record.

In this paper, we made an exhaustive search on n1, n2, h1 and h2 to find such function

fields E = Fq(x, y1, y2) with many rational places over the finite fields F5 and F7. We

used the method given in [5] to determine the number of rational places of E over Fq

(see also Section 4). We implemented this method in Algorithm 1 in Section 2. At

the end of the search, we have 12 records and 6 new entries for the current tables [8]

presented in the Tables 1, 2 and 3. Furthermore, we observe that this method for

determining the number of rational points of E is upto 107 faster than the generic

method available in MAGMA [9] (see Tables 4 and 5).
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The paper is organized as follows. In Section 2 we explain the details of how we

executed the search and give our records and new entries. In Section 3 we compare the

implemented counting method of rational places with the method available in MAGMA.

In Section 4 we give some background information about fibre products of Kummer

covers that our Algorithm 1 depends on.

2. Implementation and Results

Let n1 and n2 ≥ 2 be integers, and h = (h1,1(x), h1,2(x), h2,1(x), h2,2(x)) be tuple

of polynomials defined over Fq. Let Eq,n1,n2,h be algebraic function field Eq,n1,n2,h =

Fq(x, y1, y2) with the system of equations of the fibre product

yn1
1 =

h1,1(x)

h1,2(x)
, yn2

2 =
h2,1(x)

h2,2(x)
.(2.1)

We will assume that [Eq,n1,n2,h : Fq(x)] = n1n2 and the full constant field of Eq,n1,n2,h

is Fq.

We use the method presented in [5] for counting rational places of Eq,n1,n2,h to obtain

algebraic function fields with many rational places (see Section 4, Theorem 4.1). To

begin with, we observed experimentally that counting rational places by this method

(i.e. by using Theorem 4.1) is much faster than generic calculation method available

in MAGMA [9]. Namely, this method calculates number of rational places up to 107

times faster than the method NumberOfDegreeOnePlacesOverExactConstantField of

MAGMA over q = 7 for n1 = n2 = 6 and degh1,1 = 3, degh1,2 = 1, degh2,1 = 3,

degh2,2 = 1 (see Table 4). According to this observation, we made a search for algebraic

function fields with many rational places over F5 and F7 by using the method given in

[5].

We define finite set Sq,d of polynomials over Fq for an integer d as follows

Sq,d = {(h1,1, h1,2, h2,1, h2,2) :
∑
i,j

deg(hi,j) ≤ d, gcd(hi,1, hi,2) = 1, i = 1, 2}.

And, we define search set Eq,d of possible algebraic function fields as

Eq,d = {Eq,n1,n2,h : h ∈ Sq,d, 2 ≤ n1, n2 ≤ q − 1}.

Before we present our results, we state the next fact which reduces set of possible

algebraic function fields having many rational places.

Lemma 2.1. Let Eq,n1,n2,h and E′q,n1,n2,h′ be two algebraic function fields defined as in

(2.1) for tuples of polynomials h = (h1,2, h1,1, h2,1, h2,2) and h′ = (h′1,1, h
′
1,2, h

′
2,1, h

′
2,2).

Eq,n1,n2,h and E′q,n1,n2,h′ are equivalent algebraic function field definitions if one of the

equalities holds:

i. (h′1,1, h
′
1,2, h

′
2,1, h

′
2,2) = (h1,2, h1,1, h2,1, h2,2)

ii. (h′1,1, h
′
1,2, h

′
2,1, h

′
2,2) = (h1,2, h1,1, h2,2, h2,1)

iii. (h′1,1, h
′
1,2, h

′
2,1, h

′
2,2) = (h1,1, h1,2, h2,2, h2,1)
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iv. (h′1,1, h
′
1,2, h

′
2,1, h

′
2,2) = (c1h1,1, c1h1,2, c2h2,1, c2h2,2), for c1 and c2 in Fq.

Proof. Assume the equality in the first case holds. As E′q,n1,n2,h′ is defined as E′q,n1,n2,h′ =

Fq(x,
1
y1
, y2), and Fq(x,

1
y1
, y2) is an equivalent definition of the function field Eq,n1,n2,h,

we have the equality of function fields Eq,n1,n2,h = E′q,n1,n2,h
. The proof of other cases

is similar. Therefore, we complete the proof. �

By using Lemma 2.1, we reduce set Eq,d to E′q,d

E′q,d = {Eq,n1,n2,h : h ∈ S′q,d, 2 ≤ n1, n2 ≤ q − 1},

where S′q,d defined as

S′q,d = {h ∈ Sq,d : degh1,1 ≥ degh1,2, degh2,1 ≥ degh2,2}

for monic polynomials h1,2 and h2,2.

Algorithm 1 Search for algebraic function fields with many rational places

Input: Table available in [8] and parameters q, d.

Output: Sets of Records, New Entries and Best Known Results.

1: Define Nmax,q,g (resp. Nmin,q,g) as the best known upper (resp. lower) bound for Nq(g)

given in Table. And, set Nmin,q,g = 0 if there exists no result for Nmin,q,g in Table.

2: Initialize sets RecordsNewEntries = {} and BestKnownResults = {}.
3: for Eq,n1,n2,h in E′′

q,d do

4: Find genus g of Eq,n1,n2,h by Proposition 4.2.

5: if g ≥ 1 then

6: Find number of rational places N of Eq,n1,n2,h by Theorem 4.1.

7: if N >
Nmax,q,g√

2
then

8: if N ≥ Nmin,q,g then

9: if Eq,n1,n2,h defines an algebraic function field then

10: if full constant field of Eq,n1,n2,h is Fq then

11: if extension degree satisfies [Eq,n1,n2,h : Fq(x)] = n1n2 then

12: if N > Nmin,q,g then

13: Save Eq,n1,n2,h into the set RecordsNewEntries.

14: else

15: Save Eq,n1,n2,h into the set BestKnownResults.

16: end if

17: end if

18: end if

19: end if

20: end if

21: end if

22: end if

23: end for

24: return RecordsNewEntries and BestKnownResults
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Furthermore, we restricted the search on function fields Eq,n1,n2,h satisfying n1 | q−1

or n2 | q − 1. In addition, we assume that degh1,1 ≥ 1 and degh2,1 ≥ 1 as these cases

correspond to the case k = 1. Therefore, we restrict set E′q,d to E′′q,d defined as

E′′q,d = {Eq,n1,n2,h : h ∈ S′′q,d, n1 | q − 1, n2 | q − 1},

where set S′′q,d is defined as

S′′q,d = {h ∈ S′q,d : degh1,1 ≥ 1, degh2,1 ≥ 1}.

We explain the steps of our exhaustive search method over E′′q,d for algebraic function

fields with many rational places in Algorithm 1. We implemented Algorithm 1 for q = 5

and q = 7, and we present the the results below.

2.1. F5. We made an exhaustive search over the set

E′′5,10 = {E5,n1,n2,h : h ∈ S′′5,10, n1 | 4, n2 | 4}

by using Algorithm 1. In addition, we observed experimentally while searching on E′′5,10

that algebraic function fields defined as E5,4,4,h for some h are very likely to have many

rational places. So, we extended the search to include polynomials h1,1(x), h1,2(x), h2,1(x)

and h2,2(x) satisfying

degh1,1 + degh1,1 + degh1,1 + degh1,1 = 11

for n1 = 4 and n2 = 4 Then we observed 4 records for the table [8]. We present

examples of records in Table 1, where N and g denote the number of rational places

and genus of E5,n1,n2,h for h = (h1,1, h1,2, h2,1, h2,2).

Remark 2.2. We remark that algebraic function fields over Fq defined with equations

having degrees greater than q − 1 may have many rational places with respect to their

lower degree counter parts. For instance, function field E5,4,4,h1 defined over F5 as

y4
1 =

x6 + 3x4 + 4x3 + x2 + 2x+ 2

x+ 2
, y5

2 = 3x4 + 4x3 + 2x2 + x+ 1

has genus 29 and 64 rational places. On the other hand, function field E5,4,4,h2 defined

over F5 as

y4
1 =

x2 + 3x4 + 4x3 + x2 + 2x+ 2

x+ 2
, y5

2 = 3x4 + 4x3 + 2x2 + x+ 1

has genus 45 and 64 rational places. The former has many rational places, in fact an

example of a record for the table [8]; but the later does not. Therefore, even E5,4,4,h1

consists of a polynomial having degree bigger than the polynomial occurring in E5,4,4,h2 ,

E5,4,4,h1 has smaller genus. This also implies that it is required to search function fields

consisting of polynomials whose degrees are greater than q − 1.
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Table 1. Algebraic function fields with many rational places over F5 (Records)

n1 n2 h1(x) =
h1,1(x)
h1,2(x) h2(x) =

h2,1(x)
h2,2(x) g N Nmin,q,g

2 2 3x3+2x2+2x+1
x2+2x+4

2x3+4x2+1
x2+2x+4

6 22 21

4 4 (x)(x2+x+2)
x+4

(x+4)(x2+2x+4)
x 25 56 52

4 4 (x+4)(x2+4x+2)
x+3

4(x+4)(x2+3x+4)
(x+3)2

27 56 52

4 4 x6+3x4+4x3+x2+2x+2
x+2

3x4+4x3+2x2+x+1
1 29 64 52

2.2. F7. We made an exhaustive search over the set

E′′7,8 = {E7,n1,n2,h : h ∈ S′′7,8, n1 | 6, n2 | 6}

by using Algorithm 1. Then we observed 8 records and 6 new entries for the table [8].

We present results within two tables. Tables 2 and 3 consist of examples of our results

which are records and new entries according to the table [8], respectively.

Table 2. Algebraic function fields with many rational places over F7 (Records)

n1 n2 h1(x) =
h1,1(x)
h1,2(x) h2(x) =

h2,1(x)
h2,2(x) g N Nmin,q,g

3 2 4x2+4x+5
1

2(x2+x+3)(x2+3x+1)
1 5 26 24

2 3 6(x+6)(x2+1)
1

4(x+5)(x2+1)2

1 6 27 25

3 3 5(x+2)(x+5)
x

3x2(x+5)
x+3 7 36 30

3 3 x2+1
x

x2+4
1 10 39 36

3 6 6(x2+1)
1

(x+1)(x+6)2

x+5 16 54 45

2 6 6(x+3)(x2+x+3)
1

4(x+3)2(x2+3x+6)
x+2 18 52 51

3 6 x(x+1)
x+4

(x+4)3

x(x+5) 19 63 54

6 6 3x2(x+1)
x+3

2x(x+1)(x+3)
x+1 22 72 63

Table 3. Algebraic function fields with many rational places over F7

(New Entries)

n1 n2 h1(x) =
h1,1(x)
h1,2(x) h2(x) =

h2,1(x)
h2,2(x) g N dNmax,q,g√

2
e

2 6 6(x+3)(x2+x+3)
1

4x2(x2+x+3)
x+5 14 44 41

2 6 2(x+3)(x+4)(x+6)
1

3(x+3)2(x2+2x+3)
x+4 15 52 43

2 6 4(x+2)(x2+4)
1

2(x+2)2(x+5)(x2+x+3)
1 20 54 53

3 6 6(x+6)(x2+6x+4)
x+4

3(x+6)2(x2+5x+5)
1 28 72 68

6 6 3x(x+2)(x+3)
1

6x2(x+4)
(x+3)2

40 108 90

6 6 4(x+1)(x+5)(x+6)
1

3(x+6)2(x2+4x+5)
x+1 49 114 107
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Remark 2.3. Algebraic function field E7,3,3,h, h = (5(x+2)(x+5), x, 3x2(x+5), x+3)

having 36 rational places is not only a record for N7(7), but also it attains the best

known upper bound (i.e. Oesterlé bound) for N7(7). We also note that we observed

many such examples for N7(7).

3. Comparison

Let E be the algebraic function field E = Fq(x, y1, y2) with the system of equa-

tions in (1.2) In this section, we compare time consumption of the counting method

of rational places of E given in [5] with the method available in MAGMA [9] (namely,

with the command NumberOfPlacesOfDegreeOneOverExactConstantField). Further-

more, we compare genus calculation of E by using Proposition 4.2 with the generic

genus calculation method available in MAGMA (namely, with the command Genus).

Finally, we compare time consumption necessary for searching for algebraic function

fields with many rational places, where search algorithms are designed with our meth-

ods and with the methods available in MAGMA.

Firstly, we randomly choose 100 tuples (h1,1, h1,2, h2,1, h2,2) of polynomials over Fq[x]

of degrees degh1,1 = 3, degh1,2 = 1, degh2,1 = 3, degh2,2 = 1 for q ∈ {5, 7}. In order

to see the difference better we perform the algorithms for two distinct ni, i = 1, 2

values. Namely, we measure the time consumption of the algorithms mentioned above

for ni = q − 1, i = 1, 2 and for ni = 2, i = 1, 2. We present the results in Tables 4 and

5.

Table 4. Time Consumption: n1 = n2 = q − 1 (seconds)

q = 5 q = 7

Number of rational points by Theorem 4.1 0,030 0,050

Number of rational points by MAGMA 2963,672 1875784,390

Genus by Proposition 4.2 0,015 0,020

Genus by MAGMA 2630,777 1838117,550

Search by Theorem 4.1 and Proposition 4.2 0,045 0,070

Search by MAGMA 2983,327 1865715,560

Table 5. Time Consumption: n1 = n2 = 2 (seconds)

q = 5 q = 7

Number of rational points by Theorem 4.1 0,030 0,050

Number of rational points by MAGMA 5,635 7,300

Genus by Proposition 4.2 0,015 0,020

Genus by MAGMA 24,490 6,170

Search by Theorem 4.1 and Proposition 4.2 0,042 0,050

Search by MAGMA 5,765 10,050
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As it is seen from implementation results given in tables that the method given in [5]

is faster than MAGMA for any case. On the other hand, for larger ni, i = 1, 2 values

the method given in [5] is much faster than MAGMA. In other words, increasing ni,

i = 1, 2 values affects the speed of MAGMA functions more than increasing finite field

size.

4. An Explanation of the Method

In this section, we briefly explain the method given in [5] which enables us to deter-

mine the exact number of rational places of fibre products of two Kummer covers of

the projective line over finite fields Fq. And, we state a proposition for calculation of

their genus.

For each element u ∈ Fq, let P0 denote the rational place of Fq(x) which corresponds

to the zero of (x − u) and similarly let P∞ denote the rational place of the rational

function field Fq(x) corresponding to the pole of x. Furthermore the evaluation of fi(x)

at P0 is denoted by fi(u) for i = 1, 2.

For i = 1, 2, we write hi(x) in (1.2) in the following form:

hi(x) = (x− u)aifi(x), and νP0(fi(x)) = 0.

where ai ∈ Z and fi(x) ∈ Fq(x). In this setting, ai and fi(x) are uniquely determined.

For 1 ≤ i ≤ 2, let n̄i, n
′
i and a′i be the integers:

n̄i = gcd(ni, ai), n′i =
ni
n̄i
, and a′i =

ai
n̄i
.(4.1)

When we define n′i and a′i as above we get that

gcd(n′i, a
′
i) = 1 for 1 ≤ i ≤ 2.(4.2)

Note that if ai = 0, then n′i = 1. We define

The following theorem is the main result used in our computer search.

Theorem 4.1. [5] Let m2 = gcd(n′2, n
′
1) and E = Fq(x, y1, y2) be the algebraic function

field with

yn1
1 = h1(x),

yn2
2 = h2(x).

(4.3)

Assume that the full constant field of E is Fq and [E : Fq(x)] = n1n2. Moreover assume

that n̄1 | (q − 1), n̄2 | (q − 1) and m2 | (q − 1). As gcd(n′1, a
′
1) = 1, we choose integers

A1 and B1 such that A1n
′
1 +B1a

′
1 = 1. Let

A = lcm

(
n̄1

gcd(−a′2B1, n̄1)
, n̄2

)
.

Let m̂2 = gcd
(
q−1
A ,m2

)
. Then there exist either no or exactly (n̄1n̄2m̂2) rational places

of E over P0. Furthermore, there exists a rational place of E over P0 if and only if all

of the following conditions hold:
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C1: f1(u) is an n̄1-power in F∗q.

C2: f2(u) is an n̄2-power in F∗q.

C3: Assume that the conditions in items C1, C2 above hold and let α1, α2 ∈ F∗q such

that αn̄1
1 = f1(u) and αn̄2

2 = f2(u). Let

B = lcm

(
A,

q − 1

m2

)
.

Then (
α
−a′2B1

1 α2

)B
= 1.

One can also state a similar theorem for the number of rational places lying over P∞

(see [5, Remark 5]).

Next, we represent the genus computation for fibre products of two Kummer covers

over finite fields Fq.

Here we assume that the full constant field of E is Fq, [E : Fq(x)] = n1n2 and

gcd(n1, q) = gcd(n2, q) = 1. We compute the genus g(E) of E using Hurwitz Genus

Formula (see Theorem 3.4.12 in [6]) and Abyhankar’s Lemma (see Proposition 3.8.9 in

[6]). Let F1 and F2 be the intermediate fields Fq(x) ⊆ Fi ⊆ E where Fi = Fq(x, yi) for

i = 1, 2. Let F̄q be the algebraic closure of Fq. Let E′ = EF̄q, F
′
1 = F1F̄q and F ′2 = F2F̄q

be the constant field extensions of E, F1 and F2, respectively. It is well known that the

full constant field of E′, F ′1 and F ′2 is F̄q (see Proposition 3.6.1 in [6]). Furthermore,

the genus g(E′) of E′ is the same as the genus g(E) of E (see Theorem 3.6.3 in [6]) and

E′ is the compositum F ′1F
′
2 of F ′1 and F ′2. Note that E′ is an extension of the rational

function field F̄q(x) and [E′ : F̄q(x)] = [E : Fq(x)] = n1n2. For a place P of the rational

function field F̄q(x) and a place Q of E′ lying over P , let d(Q|P ) denote the different

exponent of Q over P . Using Hurwitz Genus Formula, for the genus g(E′) of E′ (and

hence for g(E)) we obtain that

2g(E)− 2 = 2g(E′)− 2 = n1n2(−2) +
∑
P

∑
Q|P

d(Q|P ) degQ,(4.4)

where P runs through the places of F̄q(x) which are ramified in the extension E′/F̄q(x)

and Q runs through the places of E′ lying over P .

Suppose that h1(x) and h2(x) are factorized into linear polynomials over F̄q as follows:

h1(x) = c1
h1,1(x)

h1,2(x)
=
r1(x)r2(x) · · · ra(x)

s1(x)s2(x) · · · sb(x)
,

h2(x) = c2
h2,1(x)

h2,2(x)
=
u1(x)u2(x) · · ·um(x)

v1(x)v2(x) · · · vn(x)
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where ci ∈ F∗q , ri, sj , uk, vl are monic degree one polynomials in F̄q[x] with gcd(ri, sj) =

1 for i = 1, 2. We determine d(Q|P ) using Abhyankar’s Lemma in each case and get

the following Proposition for computing the genus.

Proposition 4.2. Let F1 = Fq(x, y1) and F2 = Fq(x, y2) be the algebraic function fields

with yn1
1 = h1(x) =

h1,1(x)
h1,2(x) and yn2

2 = h2(x) =
h2,1(x)
h2,2(x) respectively, where h1,1(x), h1,2(x),

h2,1(x), h2,2(x) ∈ Fq[x] then the compositum F1F2 = E = Fq(x, y1, y2) and the genus

g(E) of E is equal to:

g(E) = 1− n1n2 + 1
2n1n2

1− 1

lcm
(

n1
gcd(n1,|d1|) ,

n2
gcd(n2,|d2|)

)


+ 1
2n1n2

∑
p(x)∈R

1− 1

lcm
(

n1
gcd(n1,ap,1) ,

n2
gcd(n2,ap,2)

)
deg(p(x)).

where d1 = deg h1,2(x) − deg h1,1(x), d2 = deg h2,2(x) − deg h2,1(x), R is the set of

all irreducible polynomials in the polynomial ring Fq[x] and ap,i is the multiplicity of

p(x) ∈ R as a zero or pole of hi(x) for i = 1, 2. If p(x) ∈ R is neither a zero nor a pole

of hi(x) then obviously ap,i = 0 and the summation is finite as each rational function

has finitely many zeros and poles.

The proposition can be proved using Proposition 3.7.3 in [6] on Kummer extensions

and Abhyankar’s lemma (see Proposition 3.8.9 in [6]). We also refer to [5, Example 1]

for some details.

We note that calculation of the genus by this proposition is also much faster than

generic calculation of the genus by MAGMA (see Table 4).
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